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Part I

Physics Part

I. A SYSTEMATIC APPOACH TO QUANTIFY CONSTRAINTS ON PDFS IM-

POSED BY EXPERIMENTAL DATA

A. Introduction

1. Situation

Parton distribution functions (PDFs) are crucial for understanding the behaviour of
hadron collisions and then exploring the Standard Model (SM). PDFs describe the
structure of hadrons, which a�ect the con�gurations of the �nal particles in the colli-
sions. Therefore, the magnitudes of physical observables in hadron collisions strongly
depend on PDFs. Currently, The Large Hadron Collider (LHC) produces a lot of ex-
perimental data. Owning to the fact that uncertainties in measurements constantly
decrease, reducing the PDF uncertainties of physical observables and using the higher
order PDFs will make it easier to �nd the inconsistency between SM and the data sets
collected by the LHC and then discover new physics. Incorporating more (LHC) new
data sets in the global �ts of PDFs is a naive way to generate better PDF sets with
small uncertainties.

2. Problem Statement

However, incorporating more experimental data points will substantially increase the
time for �tting PDF sets, especially when we �t higher order PDF sets. From here
we know that how to select data sets in global �ts will become extremely important
in the near future. It is essential to know which data sets will e�ective constrain the
higher order PDFs for the global �ts in the limited time of computation. In addition,
because physical predictions are sensitive to respective �avours and regions of {ξ, µ}
in PDFs, we need to narrow down uncertainties of the speci�c regions of {ξ, µ} (in the
PDFs). Where partonic ξ are momentum fractions and µ are QCD factorization scales.
For example, if PDF values for the leading {ξ, µ} ranges and �avours that characterize
kinematical quantities for Higgs production processes (e.g. at µ = 125GeV ) are tightly
constrained, the theoretical predictions for these processes are reliable (precise).

(a) methods

Using correlation between PDF uncertainties in two observables have been pro-
posed to study constraints on PDFs and constraints on observables imposed by
PDFs [6][5][4].

(b) the evaluation of the methods

The approach can help us to �nd the {ξ, µ} ranges of PDFs a�ecting physical
observables such as total cross section [4]. It is yet be established that how to
know the ranges specifying PDFs constrained by experimental data sets.
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3. Objectives

Thus, establishing a better understanding of the relationships between the strength
of constraints on PDF and experimental data sets will be a signi�cant and bene�cial
contribution to particle physics.

4. Methodology

I have developed and tested a systematic method to study the constraints on PDFs
imposed by the experimental data sets. I will use established statistical observables
to quantify the strength of these constraints. After that, I will introduce a statis-
tical technique to visualize the regions of partonic momentum fractions ξ and QCD
factorization scales µ where the experiments impose strong constraints on the PDFs.
Recent experimental data will be considered in the analysis in order to provide better
constraints to various ranges of PDFs.

5. Scope, Limitations and Asumptions

6. Signi�cance

7. Structure of This Paper

The article proceeds as follows. First, in the IB 1, we give a brief overview of PDF
�tting. Second, the method used to �see� PDF from experimental data is introduced in
IB 2. Third, an idea to estimate constraint of PDFs that we have seen from this method
is provided in IB 3. Fourth, advantages of using correlation, residual uncertainty, and
sensitivity to study PDF constraint is discussed in IC 1. Two methods are discussed
in IC 2 and IC 3. The corresponding Mathematica code is introduced in II.

B. Overview of Global �tting and Constraints on PDFs

...

1. Introduction of PDF �tting

To �t PDF sets, we �rst need to determine the input theoretical model and data sets. The
model includes the selection of quark mass, coupling constants and the order considered in
the correction of perturbation (i.e. LO, NLO and etc). Then we determine the parametriza-
tion function form fq(ξ,Q0) = a0ξ

a1(1 − ξ)a2F (a3, a4, ......) at the lowest factorization scale
Q0, for which we need to take some physical rules into account. For instance, a0ξ

a1(1− ξ)a2
term requires that the probabilities of the partons with momentum fraction ξ = 1 or ξ = 0
are 0. Besides, the momentum conservation (

∫ 1

0
ξ
∑
i

fi(ξ,Q)dx = 1) requires that the total

momentum of all subparticles in each hadron should equal to the kinematical momentum
of that hadron. (

∫ 1

0
(u(x) − ū(x))dx = 2 and

∫ 1

0
(d(x) − d̄(x))dx = 1) require that protons

consist of uud at the low factorization scale. we use χ2 minimization to explore the best
�t parameters a0, a1, a2 and etc. χ2 analysis applies the ratios of the deviations between
theoretical predictions and experimental values to experimental error bars to quantify the
goodness of �ts. Here are steps of the PDF �tting:
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1. select the experimental data sets and theoretical model in global �ts

2. write down parametrization functions of all �avours

3. determine the best-�tted a0, a1, a2...... of the parametrization functions by minimizing
χ2

4. determine uncertainties of the parametrization functions by requiring χ2 < χ2
min +

χ2
torelance

2. PDF �tting with χ2 Method

χ2 test is a way to evaluate the goodness of �ts. We assume good �ts are theoretical
predictions within experimental error bar. Thus, by residuals (ri) of data points i, We can
estimate the goodness of the �t of this point. For data sets, the goodness of �ts is the
sum of all points i and ri, which means that we use the squared distance to evaluate the
agreement between the model and the data sets. Hence, we can obtain the best coe�cients
of the model by minimizing χ2. If χ2 � Ndata for a data set and a theory, this �t is bad. If
χ2 ≤ Ndata, this �t is better than expected. If χ2 � Ndata, this �t is over�tted. To sum up,
ri and χ

2 could be de�ned as follows:

ri =
Ti −Di

σi

χ2 =
∑

i∈Expt data

r2i

Where i ri, Ti, Di, and σi are the residual, theoretical prediction, experimental central
value, and experimental uncertainty in data point i. When we take systematic uncertainties
into account, the experimental central values should be modi�ed to Dshift,i = Di + shifti
since the averages of the measurements are shifted from the real values. Here we provide
criteria of good PDF �ttings

1. χ2 ' Ndata, the smaller a χ2, the better a �tting

2. if residuals of points i are small (|r| < 1, r is called residual
Ti−Dshift,i

σi
), the �t of these

points is good

3. How to estimate PDF constraints

In general, we estimate the uncertainties of the parameters describing PDFs by con-
straining χ2 value. In other words, we identify the region representing to the parameter
uncertainties by the region with χ2 smaller than χ2

min +χ2
torelance. We learn that constraints

on PDFs are from constraining the upbound of the goodness of �ts. When we �t theoretical
models to match experimental data so that ri for data points i and χ2 are not too large,
PDFs are constrained. Thus, we use χ2 and ri to see the constraints on PDFs because they
represent the criteria of the goodness of �ts and fa(ξ, µ) values are constrained to meet this
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Figure 1: Theoretical predictions and an experimental data point measurement with the
error bar. Red crosses and blue crosses are two sets of theoretical prediction uncertainties.

criteria. In other words, the criteria could determine the range of fa(ξ, µ). For instance, Fig.
1 is the comparison of two di�erent �uctuations of theoretical values. Even though mean
values of red crosses and blue crosses are the same, we can �nd the �uctuation of red crosses
is easier to be detected because it's a�ection on residual values is larger than the �uctuation
of blue crosses'. Fig. 2 is the comparison of two di�erent �uctuations of residuals depending
on fa(ξ, µ). Although both of red circles and blue circles are strongly correlated, red circles
are more sensitive to fa(ξ, µ) because the fa(ξ, µ) �uctuation of red circles strongly a�ects
values of residuals. Therefore, To understand the relationship between data sets and the
constraints on PDFs imposed by these data sets, we should study whether χ2 and ri are
sensitive to the variation of fa(ξ, µ) values.

C. Systematic method for studying constraints on PDFs imposed by experimental

data sets

framework
I have developed and tested a systematic method to study the constraints on PDFs

imposed by experimental data sets. I use established statistical observables to quantify the
strength of these constraints. After that, I introduce a statistical technique to visualize
the regions of partonic momentum fractions ξ and QCD factorization scales µ where the
experiments impose strong constraints on the PDFs. Recent experimental data is considered
in the analysis in order to provide better constraints to various ranges of PDFs.

To test the e�ectiveness of the proposed method, I study constraints on CT14NNLO
parton distributions [1] from various data sets. I include various types of experimental
data sets in the analysis, including DIS processes, Z → l+l−, dσ/dy(l), W → lν, and jet
productions (p1p2 → jjX).

visualization method
For data sets of interest, we can demonstrate and identify values of correlation/sensitivity

data by di�erent colors on the ξ − µ plane (2D − ξ − µ �gure), such as Figs. 2, which help
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Figure 2: The sensitivity of a data point to a PDF. Red circles and blue circles are
residuals of two data points versus f(x,Q) values in PDF error sets

us to rapidly estimate the distribution of the strength of constraints on the ξ − µ plane.
We can also know the number of data points constraining PDFs by the histograms of the
statistical quantities.

1. Statistical quantities for constraints

introduction correlation and sensitivity
Among various quantities that characterize the sensitivity of the experimental data to

the PDFs, the correlations Corr(fa(ξ, µ), ri) of PDFs fa(ξ, µ) and residuals ri can determine
whether there exist predictive relationships between PDFs and goodness of �t to data points.
Here a is the �avour index, and ri is the residual of data point i. We can also de�ne a factor
δri × Corr(fa(ξ, µ), ri) to quantify the sensitivity of the experimental datum to a variation
of the PDF. Both correlation and sensitivity are useful for constraining PDFs.

correlation

correlation's advantages
Correlation illustrates the strength of the predictive relation between any two observables

X and Y . We can use values of one observable to predict values of another observable very
well when their correlation is close to ±1. correlations of Hessian uncertainties [6] have been
used to see the simultaneous constraint on observables X and Y , and to get constraints on
PDFs [6][5][4]. First, via measuring one physical observable, we are able to predict the value
of another observable precisely. In addition, strong correlations are highly likely to show the
signs of some physical relations, such as causation, between the two observables.

Hessian correlation: de�nition and physical meaning
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Figure 3: Lissajous �gure of observables X and Y for di�erent cosφ

δX

δY

δX

δY

δX

δY

cosϕ ≈ 1 cosϕ ≈ 0 cosϕ ≈ −1

There are several ways to evaluate uncertainties on PDFs such as the Hessian method
[6], the Monte Carlo method [2][3], and the Lagrange Multiplier [7]. Our PDF set input is
CT14NNLO, which uses the Hessian method to estimate uncertainties information. This
idea is based on the quadratic assumption. According to the quadratic assumption, we will

get an elliptical shape of PDF parameter space around the best �t parameters
⇀
a0 for a given

tolerance parameter χ2
tolerance satisfying χ

2(
⇀
a) < χ2(

⇀
a0)+χ2

torelance. If errors of an observable
X along the ± directions of i-th dimension of the ellipse are X+

i and X−i , the uncertainty
of X based on the variation of parameter at i-th dimension could be approximated by
(X+

i −X−i )/2. According to the principle of error propagations, the X uncertainty via PDF

parameter space is ∆X = 1
2

√∑
i

(X+
i −X−i )2.

Our idea of studying PDF constraints from data sets uses the correlation between PDF
Hessian sets and residual Hessian sets, where the Hessian correlation of two observables is
de�ned as cosφ =

∑
i

(X+
i −X−i )(Y +

i −Y −i )/4∆X∆Y . The correlation of any two observables

X and Y could be used to see the simultaneous constraint of X and Y [6]. The ellipse of
simultaneous constraint could be described by �Lissajous �gure�

X = X0 + ∆X sin(θ + φ)

Y = Y0 + ∆Y sin(θ + φ)

where 0 < θ < 2π traces the shape of the ellipse, and whether the shape is needle-like or
circle-like is controled by φ. If |cosφ| ' 1, the shape is needle-like, which strongly constrains
Y for a given δX (see Fig. 3). Thus, the correlations Corr(fa(ξ, µ), ri) of PDFs fa(ξ, µ)
and the residuals ri can determine the strength of constraints on PDFs imposed by ri in
experimental data points.

δr and sensitivity

construct more representative statistical quantity for constraints
Although we can know the predictivities between PDFs and measurements through

Corr(fa(ξ, µ), ri), Corr(fa(ξ, µ), ri) could not specify the strength of constraints on PDFs
imposed by ri (SOC(PDF )). For instance, the measurements with large uncertainties can-
not e�ectively constrain fa(ξ, µ) no matter how large Corr(fa(ξ, µ), ri) is, since ri is not
sensitive to the variation of fa(ξ, µ). Therefore, we want to �nd a more representative sta-
tistical quantity for SOC(PDF ). To study SOC(PDF ) between PDFs and data sets, we
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study the variation of χ2 and ri associated with the �uctuation in fa(ξ, µ). Fig. 2 shows
ri in data points depending on the variation in fa(ξ, µ) error sets. We �nd that despite the
fact that the correlation between ri in two data points (red circles and blue circles) and
fa(ξ, µ) are the same, the �uctuation for fa(ξ, µ) imposes di�erent levels of impact to ri.
The ri, represented by red circles, are more sensitive to fa(ξ, µ), which indicates that when
we constrain χ2 for getting the new �tted fa(ξ, µ) error sets, the data point represented
by the red circles will more dramatically narrow down the range of the new fa(ξ, µ) error
sets so that ri for error sets become smaller. Here we �nd the δri, which evaluates the
fraction of theoretical and experimental uncertainties, indicating whether the theoretical
uncertainties are apt to be constrained after the �tting. For the above reasons, we advise
using δri × Corr(fa(ξ, µ), ri) to quantify the sensitivity (Sen(fa(ξ, µ), ri)) for ri to fa(ξ, µ),
and using the sensitivity to estimate SOC(PDF ) for data point i.

2. Same point method

objective
In principle, we can use the correlation & sensitivity mentioned above to quantify

SOC(PDF ) for any points on the ξ − µ plane and data point i. Therefore, we can identify
which regions in the ξ − µ plane have strong SOC(PDF ). Our objective is to characterize
the strongly constrained ranges (Strong SOC(PDF ) Regions) imposed by the given data
sets.

di�culties in the analysis and solutions
Acquiring the corresponding Strong SOC(PDF ) Regions for each point i still could not

tell us which ranges are constrained by each data set because the amount of information in
all data points is too large to analyze it. Therefore, we present a simple method as follows.
For each data point i, we select the points (or the ranges) in the ξ−µ plane whose fa(ξi, µi)
are constrained most by the point i (Max SOC(PDF ) Regions). Here we assume that in
scattering processes, sizes of physical observables are mainly contributed by the ranges near
{ξi, µi}. Thus, it is highly possible that the measurement at point i will impose the strongest
constraints on the fa(ξi, µi) in these ranges. As a result, the combination of these ranges
describes the most constrained ranges for all data points in each data set.

capability
It is possible to evaluate those PDF ranges. For each experimental data point i, we can

establish an approximate relation between the kinematical quantities for that data point,
and unobserved quantities a, ξ, and µ specifying the PDFs, where a, ξ, and µ are �avour,
momentum fraction, and resolution scale of partons. For example, in DIS, ξ and µ are
approximately equal to Bjorken x and momentum transfer Q according to the Born-level
kinematic relation. However, this relation is violated in high-order radiative contributions.
Nevertheless, this relation will approximately hold in most scattering events. Therefore, we
derive the relation between the kinematical quantities and unobserved quantities we men-
tioned for data sets in our analysis, including DIS, dXsec/dy(l) of Z → l+l−, dXsec/dy(l)
ofW → lν, and (di)jet productions. In practice, our �tted PDF sets are not perfect, so even
some ranges of the real PDF dominate a physical observable, the PDF sets in these ranges
are not always strongly correlated to that physical observable.

Following are formulas (code part: selectExptxQv2 in IID 9) connecting experimental
data points and their leading ξ, µ points of PDFs:

DIS: x,Qdata = ξ, µPDF
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Z → l+l−, dXsec/dy(l): (Q/
√
S)× exp(±y), Qdata = ξ, µPDF

W → lν: same as Z → l+l−, dXsec/dy(l)
JP (q1q2 → j1j2, dXsec/dpT (j)dy(j), estimate ξ1, ξ2 of jet as peak of y(j1), y(j2)):

(2pT/
√
S)× exp(±y), 2pT data = ξ, µPDF

Z → l+l−, dXsec/dpT (Z) (ID = 247, 253): (
√
p2T +m2

ll/
√
S)× exp(±y),

√
p2T +m2

lldata
=

ξ, µPDF
Z → l+l−, dXsec/dy(l)dmll (ID = 252): (mll/

√
S)× exp(±y),mlldata = ξ, µPDF

tt, dXsec/dpT (t) (ID = 565): (2pT/
√
S)× exp(±y), 2pT data = ξ, µPDF

tt, dXsec/d < y(t) > or tt, dXsec/dytt (ID = 566, 568):

(400GeV/
√
S)× exp(±y), 400GeV data = ξ, µPDF

tt, dXsec/dmtt (ID = 567): (mll/
√
S)× exp(±y),mlldata = ξ, µPDF

Here we give physics of these formulas. DIS processes are just mentioned in the example.
In lepton pair production and (di)jet production, the rapidities of the �nal-state pairs are

small for most events. If y is integrated out, we set y = 0 τ = Q/
√
S ξ1 = ξ2 = τ . If y of the

lepton pair or jet pair is known, we set ξ1,2 = τ · exp(±y). For jet production, τ = 2pjetT /
√
S

at the leading order. In most events, if rapidity yl of the lepton is known yet y of the boson
is unknown, we use the fact that yl ∼ y ± 1 for most events. You can still estimate ξ1 and
ξ2 as ξ1,2 = τ · exp(±y), where y ∼ yl (up to an error of less than 1 unit).

advantages
Because Max SOC(PDF ) Regions are obtained from a physical relation, we know the

constraints in these ranges are the real physical constraints rather than the results of other
factors, such as parametrization function dependency.

practical procedure (step by step)
Finally, we provide steps of Same point method. Steps are as follows:

1. calculate Max SOC(PDF ) Regions {ξi, µi} from corresponding experimental data
points i by using a suitable transformation formula describing the approximate relation
between {ξi, µi} and kinematical quantities for points i (code part: selectExptxQv2 in
IID 9)

2. for each data point, calculate all �avours of PDF values for the same {ξi, µi} (exe-
cutable part: fxQsamept.nb in III C)

3. calculate correlation Corr(fa(ξi, µi), ri), sensitivity δri ∗ Corr(fa(ξ, µ), ri), and other
statistical quantities (ri,central value, δri, and experimental error ratio in this code) for
every point i and every �avour a (executable: fxQsamept_corr.nb in III C)

4. draw the histograms and 2D − ξ − µ �gures for the statistical quantities derived in
step 3 (executable: run_v3.nb in III C, example �gure: 4)

3. Grid method

eg version code: delete grid method part
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((a)) The correlation (Corr(d(x, µ), ri)) of

expt 281(D0 Run-2) and d quark.

((b)) The sensitivity (δri ∗Corr(d(x, µ), ri))
of expt 281 (D0 Run-2) and d quark.

Figure 4: The correlation and sensitivity of the Hessian uncertainty of data set 281(D0
Run-2) and CT14NNLO depending on the momentum fraction and the factorization scale.

((a)) The correlation (Corr(d(x, µ), ri))

of expt 225 (cdfLasy) and d quark.

((b)) The sensitivity

(δri ∗ Corr(d(x, µ), ri)) of expt 225
(cdfLasy) and d quark.

Figure 5: The correlation and sensitivity of the Hessian uncertainty of data set
225(cdfLasy) and CT14NNLO depending on the momentum fraction and the factorization

scale.
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Figure 6: The correlation and sensitivity of the Hessian uncertainty of data set
247(ATL7Zpt) and CT14NNLO depending on the momentum fraction and the

factorization scale.

Part II

Mathematica Program

II. STRUCTURE OF THE PROGRAM

The designing of the program will be introduced in this section. To know how the program
works and how to operate it, we need to know its architecture IIA, the convention of its
data structure (format) II C, functions that users can use when they want to write their
own executables IID, how to run existing executables, and what we expect to get from the
existing executables III.

A. Leyers Of The Program

This program has three levels; In the layer 1 and 2 are functions which are called by the
layer 3, and the layer 3 is the user interface. In the Fig.7 is a diagram of the architecture of
the program.

Libraries: dtareadbotingw2016.m, pdfParsePDS2013
Layer 1: dtareadbotingw2016.m, pdfParsePDS2013
dtareadbotingw2016.m includes functions of 1. reading data from the .dta �les. 2. reading

information from the ExptID
pdfParsePDS2013 includes functions of inteporating PDF from data of .pds �les
Layer 2: corr_proj_funcs.m
corr_proj_funcs.m de�nes the data structure IID 2, read and deals with data from .dta

�les IID 3, read and deals with PDF from .pds �les IID 4, calculates observables (mainly
correlation function) by data of .dta �les and PDF IID 5, plots �gures by data IID 7

Layer 3: This layer includes following kinds of programs

12



Figure 7: the architecture of this program

1. generate PDF data, residual data, and the .dta �le of central set of selected {ξ, µ}
values and �avours and save them into �les

2. read data from �les and calculate observables by data and use these observables to
plot �gures

3. tutorial of important functions in the program

4. show information of data in a data �le or a PDF set (ex: included Experiments in this
data or PDF set) and combine the selected two data
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B. Processes Of The Program

C. Data Format

The program inputs data to draw �gures on the ξ − µ plane. The program includes two
kinds of executables. The �rst kind generate �les of data; The second kind read data from
�les, and then calculate observables from data and draw �gures of observables. data �les
contain info of the PDF values of all replicas, the residual values of all replicas, and the .dta
�le of central set. All observables in the program are listed in the following paragraph:

description of observables
fxQ: all family members of PDF f(ξ, µ)
residual: central value of residual, formula of residual = (Theory - (shifted expt))/(unCorr

error) (in every exptID of .dta �le: ([[5]]-[[11]])/[[12]] )
deltaR: Hessian symmetric uncertainty of residual
corr: correlation of PDF and residual
corrdr: deltaR*corr of PDF and residual
expt error/central: (expt error)/(expt central) (in every exptID of .dta �le: [[6]]/[[4]] )
TH error/central: (THeory error)/(Theory central), Theory error = Hessian asymmetric

uncertainty of Theory

variable names of observables in Mathematica program
following are variable names representing these observables in the program. In di�erent

code �les, observables may use di�erent variable names.
fxQ: fxQsamept2class, fxQgridclass, fxQgrid2class
residual: residualdatacorrmaxclass, residualclass
deltaR: dRdatacorrmaxclass, deltaRclass
corr: corrdataclass, corrfxQdtaobsclass
corrdr: dRcorrdataclass, dRcorrfxQdtaobsclass
expt error/central: expterrordatacorrmaxclass, expterrorclass

formats of data
The basic unit of a data is an Association with data and information of a data. Infor-

mation contains experimental information (exptid, exptname, feyndiagram) and/or PDF
information (PDFname, PDFsetmethod, Nset(total number of family members in this PDF
set), iset (family member index of this PDF set), �avour). Data part contains data and data
label. For example, fxQ[[iexpt,i�avour]] is a data of PDF of an experiment and a �avour,
which looks like:

fxQ[[iexpt,i�avour]] =
<|
"label" -> {�x�,�Q�,�set1�,...�setN�},
"data" -> {LF[ξ, µ, f1(ξ, µ), ..., fN(ξ, µ)],LF[ξ, µ, f1(ξ, µ), ..., fN(ξ, µ)],......},
"exptinfo" -> Exptinfo,
"PDFinfo" -> PDFinfo
|>
Exptinfo=
<|
"exptid" -> 159,
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"exptname" -> �HERA1X0�,
"feyndiagram" -> "unset"
|>
PDFinfo=
<|
"PDFname" -> "CT14NNLO",
"PDFsetmethod" -> "Hessian",
"Nset" -> 57,
"iset" -> "unset",
"�avour" -> "unset"
|>
The format of Data which are dealed with by functions of this program are always the ba-

sic unit or a List of it. For example, corrfxQresidualsamept[[�corrsamept�]][dtadataclassin_,
fxQsameptdataclassin_] IID 5 inputs data of an experiment and data of a PDF, and then
output a correlation data. The format of these inputs and output are just like the format
of the example.

Format of data �les for IO
When the program read or writes a data from/into �les, it usually read/write data of many

experiments and many �avours. In practical, the program read/writes a multi-dimensional
List of the basic unit from/into one �le. Every element of a List represents data of an
experiment and/or a PDF �avour.

In this program, two methods IC 2 IC 3 are used to get data of observables. Which
method is used to get a data determines the format of the data �le. Following are formats
of data �les of samept observables and grid observables:

samept
f(x,Q) of all replicas:
list of [[iexpt,i�avour]]
data format=={LF[LF[ξ, µ, f(ξ, µ)0,...,f(ξ, µ)N ],LF[ξ, µ, f(ξ, µ)0,...,f(ξ, µ)N ],...}
residual of all replicas:
list of [[iexpt]]
data format=={LF[ξ, µ, ri,0, ..., ri,N ],LF[ξ, µ, ri,0, ..., ri,N ],...}
data in the .dta �le of central set:
data format=={LF[val1, val2,...],LF[val1, val2,...],...} (formats are the same as in .dta

�les)
grid
eg version code: delete grid method part

D. Libraries and Functions

1. global variables

The global variables in this program are category of processes:
the rules of variable names is $var1$var2$var3...
$var1 = P, N, h (means proton, neutron or a complex nucleus is one of target in the

collision);
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$var2 = DIS, VBP, JP (deep inelestic scattering, vector boson production, jet produc-
tion);

if $var2 = DIS, then
$var3 = NC, CC (neutral-current, charged-current);
$var4 = l, l1, l2, lqqbar, lccbar, lbbbar (lepton, one lepton, two lepton, lqq̄, lcc̄, lbb̄ in the

�nal state);
if $var2 = VBP, then
$var3 = Z, W (Z,W boson process);
if $var2 = JP, then
no $var3 and ......
{PDISNC, hDISNC, NDISCC, hDISCC, PDISNCCC, PVBPZ, hVBPZ, PVBPW, PJP}

are category of the main types of processes. these variables include Expt IDs with corre-
sponding processes in a List of Mathematica.

2. data class

this section builds the structure of data and methods handling the data. The data
are wrapped by function �Association� in Mathematica. Datamethods is an �Association�
including methods dealing with data.

• dataclass: �Association� including data and it's information (experimental informa-
tion or PDF set information), data are stored in dataclass[[�data�]], the structure is
{LF[e1,e2,e3,...],LF[e1,e2,e3...],LF[e1,e2,e3,...],...}, eN means the N-th element of LF[].
When set up the data in dataclass, the number of elements in all LF[] should be the
same.

• Datamethods[[�getdatainfo�]][dataclass]

� return the information of a data

• Datamethods[[�getdata�]][dataclass]

� return the data part in dataclass

• Datamethods[[�setdata�]][dataclass, data]

� set the data part of dataclass as data

• Datamethods[[�getNpt�]][dataclass]

� return the number of points in the data

• Datamethods[[�getNcolumn�]][dataclass]

� return the number of elements stored in a data point

• Datamethods[[�getdatalabel�]][dataclass]
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� return the label corresponding to elements of a data point. For example, the
label of a 5-element data could be {�x�,�Q�,�Xsec�,�errorup�,�errorlow�}

• Datamethods[[�add�]][dataclass, dataadd, labeladd]

� add new elements and in every data point and add the corresponding labels
and return the dataclass, dataadd = {LF[e1,e2,...,eN],LF[e1,e2,...,eN],...}, la-
beladd={�lable1�,�label2�,...�labelN�}. the data and label of returned dataclass
will have these N more elements and N more labels in the tail of every data point.

• Datamethods[[�pick�]][dataclass, picklist]

� pick the speci�c elements in the picklist in a dataclass and return that dat-
aclass. example: Datamethods[[�pick�]][dataclass, {3,1}], data in dataclass is
{LF[e11,...,e13,...],LF[e21,...,e23,...],...,LF[eN1,...,eN3,...]}, then the function re-
turn {LF[e13,e11],LF[e23,e21],...,LF[eN3,eN1]}

• Datamethods[[�take�]][dataclass, takelist]

� immitate �Take� function on every data points of the dataclass and return it,
takelist could be the argument used in function �Take�

• Datamethods[[�delete�]][dataclass, deletelist]

� Apply �Delete� function on every data points of the dataclass and return it,
deletelist could be the argument used in function �Delete�

• Datamethods[[�tolist�]][dataclass]

� return the data in dataclass as a List (LF -> List), ex: original data in dataclass
is {LF[1,2,3],LF[10,20,30]}, then the function return {{1,2,3},{10,20,30}}

• Datamethods[[�picktolist�]][dataclass, picklist]

� example: Datamethods[[�picktolist�]][dataclass, {3,1}], data in dataclass is
{LF[e11,...,e13,...],LF[e21,...,e23,...],...,LF[eN1,...,eN3,...]}, then the function re-
turn {{e13,e23,e33,...eN3},{e11,e21,e31,...eN1}}

• Datamethods[[�LFglobal�]][dataclass]

� Since the data generated by functions in dtaread2016boting.m �le take the data
structure dtaread2016boting`Private`LF[...], the structure should be changed to
LF[...] so that some Mathematica skills can be used (such as replace /.)
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3. .dta data class

this section is for dealing with .dta data

• Readdta�le[[�readdta�]][dtaDirin_, explistin_]

� input the Directory of .dta �les and a List of experimental ID, return the experi-
mental data and information for all family members of the PDF set, the dimension
of output: [[iexpt, iset]], the structure of returned object: if output of function
�ReadExptTable� is {data1, data2,...}, the output[[iexpt, iset]] = dataN read
from the iset-th .dta �le, For example: Readdta�le[[�readdta�]][CT14NNLOpath,
{101,201}], then the function returns output[[2,57]] for data of exptid = 101, 201

• Readdta�le[[�toclass�]][datain_, PDFnamein_, PDFsetmethodin_]

� input a data (which is one experiment of output of function �ReadExptTable�),
PDFname and PDFset method (present there is only �Hessian�), return the dat-
aclass corresponding to this data. For example: Readdta�le[[�toclass�]][datain_,
�CT14NNLO�,�Hessian�]

4. .pds data class

this section is for generating dataclass of PDF (f(x, µ, flavour)) by calling pdf-
ParsePDS2013.m in ./lib (see library: dtareadbotingw2016 for detail of this �le).

• fxQcalculate[xQLFin_, PdsDirin_, PDFsetmethodin_, �avourin_]

� input PDFDir, xQLF({LF[x1, µ1],LF[x2, µ2],...}), PDFsetmethod, and
�avour (�avour = -5~5), return FxQdata class, with data struc-
ture {LF[x1, µ1, f(x1, µ1, f lavour, iset = 0), ..., f(x1, µ1, f lavour, iset =
Nset)],LF[x2, µ2, f(x2, µ2, f lavour, iset = 0), ..., f(x2, µ2, f lavour, iset =
Nset)],...}

• fxQsameptcalculate[dtadataclassin_, PdsDirin_, PDFsetmethodin_, �avourin_]

� similar to fxQcalculate, the only di�erence is the source of points
{LF[x1, µ1],LF[x2, µ2],...} are the data of dtadataclass (and return the
FxQsameptdata), p.s. "exptinfo" is copy from Dtadata[[ "exptinfo"]], "PDFinfo"
is set by input arguments

• setextrafxQ[fxQdataclasslistin_]

� this function is speci�c for adding some system-de�ned combination of PDFs
(d̄/ū, d/u, (s+ s̄)/(ū+ d̄)). input an array of fxQdataclass which includes �avour
from - 5 ~ 5, output the array with customized f(x, Q) (�avour = -5~8), �avour
of 6, 7, 8 are de�ned as following : d̄/ū, d/u, (s+ s̄)/(ū+ d̄)
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5. correlation data class

this section is about calculating the correlation of residual and any function

• corrfxQresidualsamept[[�corrsamept�]][dtadataclassin_, fxQsameptdataclassin_]

� calculating Corr(residual, f(x, µ)): input a dtadata class with data == {LF[ξ, µ,
obs1, obs2, ... obsNset], ...} and a fxQsameptdata class with data == {LF[ξ, µ,
f (ξ, µ, �avour, iset1), ..., f (ξ, µ, �avour, Nset)], ...}, the function assume {ξ, µ}
of dtadataclass & fxQsameptdataclass are the same. output the corrsameptdata
class with data structure {LF[ξ, µ, Corr(obs, f(x, µ, q))], ...}

• corrfxQresidualsamept[[�dRcorrsamept�]][dtadataclassin_, fxQsameptdataclassin_]

� calculating δr ∗ Corr(residual, f(x, µ, flavour)): input a dtadata class with
data == {LF[ξ, µ, obs1, obs2, ... obsNset], ...} and a fxQsameptdata class
with data == {LF[ξ, µ, f (ξ, µ, �avour, iset1), ..., f (ξ, µ, �avour, Nset)],
...}, the function assume {ξ, µ} of dtadataclass & fxQsameptdataclass are the
same. output the corrsameptdata class with data structure {LF[ξ, µ, δobs ∗
Corr(obs, f(x, µ, flavour))], ...}

• corrfxQresidualsamept[[�deltaR�]][dtadataclassin_]

� calculating δr: input a class with LF[ξ, µ, obs1, ..., obsNset], output δr as List :
{δr(1), δr(2), ... δr (Npt)}

• corrfxQresidualsamept[[�residual�]][dtadataclassin_]

� calculating δr: input a class with LF[ξ, µ, obs1, ..., obsNset], output the same
dataclass with data structure {LF[ξ, µ, δr], ...}

6. read/write class

This section is about read/write functions in the program.

• readcorrcon�g�le4[con�gDirin_, con�g�lenamein_]

� read arguments from a con�gure �le. �lename = �con�gDir/con�g�lename�

� the con�gure �le is for making �gures executables

� the con�gure �le includes

• readsavedatacon�g�le[con�gDirin_, con�g�lenamein_]

� read arguments from a con�gure �le. �lename = �con�gDir/con�g�lename�

� the con�gure �le is for making data executables

• readplotdatacon�g�le[con�gDirin_, con�g�lenamein_]

� read arguments from a con�gure �le. �lename = �con�gDir/con�g�lename�

� the con�gure �le is for making �gures executables

� the con�gure �le includes data �lenames and data information of �gures
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7. plot class

this section is for �gures output on the webpage; there are three kinds �gure and one
experiment name table

• PDFloglogplot[datain_, plotmarkerin_, plotstylein_, titlein_, xtitlein_, ytitlein_,
plotrangein_, lgdin_, lgdposin_, imgsizein_]

� plot the PDF data at ξ − µ plane with selected colors and markers to represent
di�erent experiments, the plot is log-log scale. data structure: {expt1,expt2,...},
exptN={LF1[ξ, µ],LF1[ξ, µ]}

� detail of argument setting is in the position of function de�nition in the program

• PDFCorrelationplot8[datain_,titlein_,xtitlein_,ytitlein_,plotrangein_,stretchxin_,stretchyin_,barseperatorin_,legendlabelin_,epilogtextin_,highlightrangein_,unhighlightsizein_]

� make plot of the data on ξ − µ plane, color of the point of the data depend
on value of data at that point, data size, highlighted data will become larger
data here is a List of data: {data1, data2, ......}. data structure of dataN =
{LF1[ξ, µ,value],LF1[ξ, µ,value],...}

� points of data1, data 2, ... will have di�erent shape

� detail of arguments setting is in the program

• histplot4[histlistin_, titlein_, xtitlein_, ytitlein_, binsetin_, lineelementin_, plo-
trangexin_, Nbinin_]

� make histogram of data value: input the List of value and other arguments, return
a histogram. data structure = {value, value,...}

� detail of arguments setting is in the program

• makeGrid2[strin_, rowsin_, titlein_]

� make experiments name table: input List of exptname, #rows per column, title
of table, return a table of expt name

� ex: makeGrid2[{�name1�,�name2�,�name3�,�name4�,�name5�}, 3, �title example�]

the function plotting all kinds of �gures for the webpage output

• processdataplotsmultiexp6percentage[corrfxQdtaobsclassin_, con�gargumentsin_,
plottypein_, �avourin_]

� make plots of the selected �gure type: the function will return one ξ−µ plot and
two histogram for �gure type (plottype) = 2~6 and one ξ−µ plot for �gure type
= 1

� data is set by corrfxQdtaobsclass, for �gure type 2, 3, 4, data structure is: dat-
aclass[[iexpt]]; �gure type = 5,6, data structure = dataclass[[iexpt,i�avour]]; for
�gure type = 1, data structure is the same as �gure type 5, 6, the function will
extract the (ξ, µ) from the data
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� �gure type option(the same as in con�g �le): # 1: data plots, 2: expt error,
3: residual, 4: "residual error" deltaR_i, 5: "sensitivity factor" deltaR_i*Corr(
r_i, F), 6: "correlation" Corr( r_i, F)

� con�garguments is the output of con�gure �le, it is convenient to input arguments
in con�g �le for making plots

� when the �gure type = 5, 6, the �avour index should be set (convention of the
�avour index is in �.pds data class� section, and the index of user de�ned function
is 9)

� example: �avour =0; p = processdataplotsmulti-
exp5percentage[dRcorrfxQdtaobsclass�nal, readcorrcon�g�le4[con�gDir, con�g-
�lename], 5, �avour];

8. other class

This section is for all functions that are hard to classi�ed

• implementeps[PlotDirin_, DirTypein_]

� convert eps �les into one pdf �le

� eps �les are output of making �gure executables

� input : Diretory storing �gures, DirType == "samept", "grid", "sameptgrid",
users should setup the right type for the method he uses to produce �gures

• implement[PlotDirin_, DirTypein_]

9. library: dtareadbotingw2016

this library is about 1. reading data from the .dta �les. 2. reading information from the
ExptID

(*perhaps need to clean unused functions*)

• ReadLisFile[lisFileName]

� input the �le of CTEQ expt list format (ex: �lename = dat16lisxxx), return a
lisTable, which record the information of experiments. This lisTable should be
activated before some functions in dtareadbotingw2016 are used

• ExptIDtoName[ExptIDin_]

� return the name of ExptID

• ExptIDEcm[ExptIDin_]

� return the Ecm of the ExptID

• ExptIDprocess[ExptIDin_]
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� return the information of the ExptID (presently the information includes Expt
name, Feynman diagram, Ecm )

• ExptIDinfo[ExptIDin_]

� return the type of the process (�DIS�, �VBP1�,�VBP2�,�VBP3�,"JP" are used in
present calculation. other types can be found in function)

• ReadDta[DtaFileName]

• ReadExptTable[DtaFileName, FileFormat]

� this function input the .dta �le and the �le format ("ct2016", "ct66", "ct60").
For CT14NNLO .dta, the �le format is "ct2016"

• selectExptxQv2[ExptIDin_, datain_, Sin_] (*Sin is not used, should be modi�ed*)

� input the ExptID and data (data structure = {LF[a__],...}), then calculate the
most possible (ξ, µ) of the PDF depend on Expt type (output of ExptIDinfo).
return the data with the structure = {LF[a__, ξ, µ],...}. formulas are explained
in IC 2.

type of processes:

DIS: deep inelastic scattering

VBP1: Q, τ (???)

VBP2: Z → l+l−, dXsec/dy(l)

VBP3: W → lν

JP: jet production, q1q2 → j1j2 (estimate x1, x2 of jet as peak of y(j1), y(j2))

Expt ID in types:

DIS = 100~199;

VBPtype1 = {};

VBPtype2 = {201, 203, 204, 260, 261, 268, 240};

VBPtype3 = {225, 227, 234, 267, 281, 241, 266};

JP = 500~599

formulas:

DIS: x,Qdata = ξ, µPDF

VBP1: Q/
√
S,Qdata = ξ, µPDF

VBP2: (Q/
√
S)× exp(±y), Qdata = ξ, µPDF

VBP3: same as VBP2

JP: (2PT/
√
S)× exp(±y), PT data = ξ, µPDF

derivation of formulas:

(* need modify) By center-of-mass relation: ŝ = ξ1ξ2s , ξ1 × ξ2 could be decided.
Assuming the ξ1, ξ2 values are close to the peak of some functions such as y(jet), the
ξ1, ξ2 value could be decided.
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III. HOW TO RUN THE PROGRAM

A. Run Step By Step

Executables can be classi�ed into making �gures and others. Making �gures is the
main part of this program. The input/output and processes of Making �gures executa-
bles will be introduced in this section. Other executables are for tutorial of main functions
(code_tutorial.nb) and showing information of data (expts_info_v4.nb). expts_info_v4.nb
makes users accessible to the information of data used to draw �gures and the analyzed di-
rectory with .dta �les. This section will focus on making �gures executables.

Steps of running the program

1. edit �savedata_con�g.txt�, then run making observable data executables (see III C)

2. edit �con�g1.txt� (and "plotdata_con�g.txt"), then run making �gures by observable
data executables

Let's take Samept method as example

1. edit �savedata_con�g.txt�, then run fxQsamept_corr_v2.nb

2. edit �con�g1.txt� (and "plotdata_con�g.txt"), then run run_v4.nb

Output �gures are in ./plots directory

B. Processes Of Executables

There are two kinds of executables: making observable data and making some �gures of
data which are produced by the program. The �rst kind of executables read arguments from
�savedata_con�g.txt�; The second kind of executables read arguments from �con�g1.txt�.

To conveniently explain processes of these executables, using �owcharts to visualize pro-
cesses is a simple way. Fig.8 and Fig.9 are the �owchart of the �rst kind excutables (the
executables do Fig.8 �rst and then do Fig.10). Fig.10 is the �owchart of the second kind of
executables:

C. Input And Output Of Executables

There are two kinds of executables: making observable data and making some �gures of
data which are produced by the program. The �rst kind of executables read arguments from
�savedata_con�g.txt�; The second kind of executables read arguments from �con�g1.txt� and
�plotdata_con�g.txt�. Following are descriptions of their executables, input, and output (as
Table I shows)

To make data, users need to set up arguments in savedata_con�g.txt:

•

• Making observable data

� executables: fxQsamept_corr_v2.nb
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Figure 8: the �owchart of making PDF data
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Figure 9: the �owchart of making observable data
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Figure 10: the �owchart of making �gures
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Table I: functions of executable �les by table: columns are methods of making plots; rows
are steps of methods.

Making observable

data, con�gure �les:

savedata_con�g.txt

Making �gures,

con�gure �les:

con�g1.txt and

plotdata_con�g.txt

Samept method fxQsamept_corr_v2.nb

(.m)

run_v4.nb (.m)

� arguments that users should set up

∗ PDF set Dir, PDF method, Expt ID List, datalis �le

∗ Correlation Path & Correlation File

∗ F(x,Q) Samept Path & F(x,Q) Samept File for samept f(ξ, µ) data

∗ F(x,Q) Grid Path & F(x,Q) Grid File, Nx, NQ for grid f(ξ, µ) data

� output: if Path & File are �default�, the program make �les with all $obs indexes:

� ./quick_data/{$obs}_samept_data_{$PDFname}.dat for samept data executa-
bles, where $PDFname = PDFname, ex: CT14NNLO, $obs = �corr�, �dRcorr�,
�dR�, �residual�, �residualNset�, �expterror�

To make �gures, users need to set up arguments in con�g1.txt & plotdata_con�g.txt:

• Making �gures by observable data

� executables: run_v3,

� arguments that users should set up

∗ #PDF set, # Figures to plot, # Experiments to include, #Functions to use
in correlations, #User function parameters are for setup of the input data

∗ #x-Q �gure parameters, #Histogram �gure parameters, #in plots, #high-
light mode, #data point size are for setup of how �gures look like

∗ for grid & xgrid executables, Path & File of data, Nx, NQ are temporary set
in the code (this part should be modi�ed)

� output: 2D-xQ, histograms

D. SOP of Plotting Figures of New Experiments

When a user want to plot �gures of new experiments, he should check whether they are
given some (x,Q) transform formulas. The user need to check ExptIDEcm & ExptIDinfo in
dtareadbotingw2016.nb, which determine which formula should be applied on an experiment
and the center-of-momentum energy

√
S of that experiment. We can �nd from IID 9 that

some formulas contain information of center-of-momentum energy, which should be set in
ExptIDEcm.

Following are the steps of plotting �gures of new experiments:
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1. set up the {ξ, µ} transform formulas and
√
S of new experiments (selectExptxQv2 and

ExptIDEcm in IID 9)

2. edit con�gure �les and run fxQsamept_corr_v2.nb to get data of observables for {ξ, µ}
of these experiments

3. edit con�gure �les and run run_v4.nb to get �gures of observables of these experiments

Appendix A: update notes

version 22:
make script versions for executables:

• script executables that have been made: all executables of making �gures

• run them in terminal: �math -script xxx.m� under bin directory

delete unused functions:

• add functions: implementeps[PlotDirin_, DirTypein_], implement[PlotDirin_,
DirTypein_], readplotdatacon�g�le[con�gDirin_, con�g�lenamein_] (con�gure �le is
plotdata_con�g.txt inIII C)

data �les of executables that making �gures are set up in "plotdata_con�g.txt"
version 23:

• �x the error text: residue -> residual

• delete resolution part in physics chapter I B 3

version 23_v7:

• add formulas of dividing the grid for Grid method IC 3

• add a table to describe executable �les ??

• add the description of grid method for Q = MW , MZ processes I C 3

version23_eg_v8:

• add descriptions of expt_info_v4.nb

• add new subsection of steps of running the program

• renew �gure ??

• saved data �le from extensions from .m to .dat

version23_eg_v10:

• rewrite the same point method part

version23_eg_v11:

• delete descriptions about grid method

version23_v16 (PDFSENSE_tutorial_1.16): update the step by step running part for
the new version, run_v3->run_v4, fxQsamept_corr->fxQsamept_corr_v2
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Appendix B: eg version

In mathscript_v23_eg (example version):

1. there are only Samept method executables in this version for simpli�cation of codes.

2. fxQsamept.nb and fxQsamept_corr.nb are combined into fxQsamept_corr.nb; That
means fxQsamept_corr.nb produces observable data directly from data in .dta �les
and PDF values in .pds �les

3. to making �gures: run fxQsamept_corr.nb and run_v3.nb

4. users can read code_tutorial.nb to understand important functions in this program

5. expts_info_v4.nb could be used to see information in observable data �les and .dta
�les (such as expt IDs contained in the �le)[4] [6]
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